Рубрики
Разработчикам

Функции потерь (Loss Functions) Для боль…

Функции потерь (Loss Functions)
Для большинства именно с этого начинается знакомство с Data Science — функции потерь помогают создавать рекомендательные и прогнозные системы, определять тенденции в массивах данных.
Допустим, у вас есть модель линейной регрессии, которой вы предлагаете исходные данные. Полученный результат вы сравниваете с образцом, чтобы определить, как далеко от реальности он лежит. Эта информация помогает вам оптимизировать функцию прогнозирования.
Как же подсчитать эту разницу? Для этого вы представляете эти данные в виде двух векторов и применяете к ним функцию потерь. Например, пусть ожидаемый прогноз — это вектор P, а ваши результаты — вектор E. Тогда P-E — это разница между данными, а длина этого третьего вектора и представляет собой величину ошибки.